291 lines
6.6 KiB
C++
291 lines
6.6 KiB
C++
#pragma once
|
|
|
|
#include <vector>
|
|
#include <SFML/Graphics.hpp>
|
|
#include <nlohmann/json.hpp>
|
|
#include <spdlog/spdlog.h>
|
|
|
|
|
|
#define TYPEDEF_VECTOR(NAME, T, N, s) typedef NAME<T> vec##N##s;
|
|
|
|
#define TYPEDEF_VECTORS(NAME, N) \
|
|
typedef NAME<float> vec##N; \
|
|
TYPEDEF_VECTOR(NAME, float, N, f) \
|
|
TYPEDEF_VECTOR(NAME, double, N, d) \
|
|
TYPEDEF_VECTOR(NAME, long double, N, ld) \
|
|
TYPEDEF_VECTOR(NAME, size_t, N, sz) \
|
|
TYPEDEF_VECTOR(NAME, int, N, i) \
|
|
TYPEDEF_VECTOR(NAME, unsigned int, N, u) \
|
|
TYPEDEF_VECTOR(NAME, short, N, s) \
|
|
TYPEDEF_VECTOR(NAME, unsigned short, N, us) \
|
|
TYPEDEF_VECTOR(NAME, long, N, l) \
|
|
TYPEDEF_VECTOR(NAME, unsigned long, N, ul) \
|
|
TYPEDEF_VECTOR(NAME, long long, N, ll) \
|
|
TYPEDEF_VECTOR(NAME, unsigned long long, N, ull)
|
|
|
|
|
|
|
|
|
|
namespace cig
|
|
{
|
|
namespace utils
|
|
{
|
|
template<typename T, size_t growth_scalar = 1, size_t growth_summand = 3>
|
|
class List
|
|
{
|
|
std::unique_ptr<T> m_Data;
|
|
size_t m_Size = 0;
|
|
size_t m_Capacity;
|
|
|
|
protected:
|
|
void reserve(const size_t capacity)
|
|
{
|
|
if (!m_Data)
|
|
{
|
|
m_Data = std::unique_ptr<T>(static_cast<T*>(calloc(capacity, sizeof(T))));
|
|
m_Capacity = capacity;
|
|
return;
|
|
}
|
|
std::unique_ptr<T> newData(static_cast<T*>(calloc(capacity, sizeof(T))));
|
|
std::copy(m_Data.get(), m_Data.get() + m_Size, newData.get());
|
|
m_Data = std::move(newData);
|
|
m_Capacity = capacity;
|
|
}
|
|
|
|
public:
|
|
explicit List(const size_t capacity = 3) : m_Capacity(capacity) { reserve(capacity); }
|
|
void own(T* data, const size_t size) { m_Data = data; m_Size = size; }
|
|
void copy(T* data, const size_t size) {
|
|
m_Data = std::make_unique<T[]>(size);
|
|
std::copy(data, data + size, m_Data.get());
|
|
m_Size = size;
|
|
}
|
|
|
|
[[nodiscard]] size_t size() const { return m_Size; }
|
|
|
|
T& operator[](size_t index) { return m_Data.get()[index]; }
|
|
const T& operator[](size_t index) const { return m_Data.get()[index]; }
|
|
|
|
void need(const size_t additional_size)
|
|
{
|
|
if (m_Size + additional_size > m_Capacity)
|
|
reserve(m_Capacity + additional_size);
|
|
}
|
|
|
|
[[nodiscard]] bool empty() const { return m_Size == 0; }
|
|
void clear() { m_Size = 0; }
|
|
|
|
void push_back(const T& value)
|
|
{
|
|
if (m_Size >= m_Capacity)
|
|
reserve(m_Capacity * growth_scalar + growth_summand);
|
|
m_Data.get()[m_Size++] = value;
|
|
}
|
|
|
|
template<typename... Args>
|
|
void emplace_back(Args&&... args)
|
|
{
|
|
if (m_Size >= m_Capacity)
|
|
reserve(m_Capacity * growth_scalar + growth_summand);
|
|
m_Data.get()[m_Size++] = T(std::forward<Args>(args)...);
|
|
}
|
|
|
|
void expand(const List<T>& other)
|
|
{
|
|
need(other.size());
|
|
std::copy(other.m_Data.get(), other.m_Data.get() + other.size(), m_Data.get() + m_Size);
|
|
m_Size += other.size();
|
|
}
|
|
|
|
void iterate(const std::function<void(T&)>& func)
|
|
{
|
|
for (size_t i = 0; i < m_Size; i++)
|
|
func(m_Data.get()[i]);
|
|
}
|
|
|
|
void iterate(const std::function<void(const T&)>& func) const
|
|
{
|
|
for (size_t i = 0; i < m_Size; i++)
|
|
func(m_Data.get()[i]);
|
|
}
|
|
};
|
|
}
|
|
|
|
using json = nlohmann::json;
|
|
|
|
template<typename T>
|
|
union Vector2 {
|
|
struct { T x, y; };
|
|
struct { T a, b; };
|
|
};
|
|
|
|
TYPEDEF_VECTORS(Vector2, 2)
|
|
|
|
template<typename T>
|
|
union Vector3 {
|
|
struct { T x, y, z; };
|
|
struct { T r, g, b; };
|
|
};
|
|
TYPEDEF_VECTORS(Vector3, 3)
|
|
|
|
template<typename T>
|
|
union Vector4 {
|
|
struct { T x, y, z, w; };
|
|
struct { T r, g, b, a; };
|
|
struct { T left, top, right, bottom; };
|
|
};
|
|
TYPEDEF_VECTORS(Vector4, 4)
|
|
|
|
|
|
|
|
class RenderCall
|
|
{
|
|
std::shared_ptr<sf::Drawable> drawable;
|
|
sf::RenderStates states;
|
|
|
|
public:
|
|
explicit RenderCall(const sf::RenderStates& states, sf::Drawable* ptr) : drawable(ptr), states(states)
|
|
{
|
|
if (!drawable) { throw std::runtime_error("RenderCall::RenderCall(): Drawable is null"); }
|
|
}
|
|
|
|
void draw(sf::RenderTarget& target, const sf::RenderStates& states) const { target.draw(*drawable, states); }
|
|
};
|
|
|
|
enum class LayoutSizes : uint8_t
|
|
{
|
|
None = 0,
|
|
Min,
|
|
Max,
|
|
Fixed,
|
|
};
|
|
|
|
enum class LayoutAlignment : uint8_t
|
|
{
|
|
None = 0,
|
|
Left,
|
|
Right,
|
|
Top,
|
|
Bottom,
|
|
Center,
|
|
};
|
|
|
|
enum class LayoutDirection : uint8_t
|
|
{
|
|
None = 0,
|
|
LeftToRight,
|
|
RightToLeft,
|
|
TopToBottom,
|
|
BottomToTop,
|
|
};
|
|
|
|
enum class LayoutPosition : uint8_t
|
|
{
|
|
None = 0,
|
|
Absolute,
|
|
Left,
|
|
Right,
|
|
Top,
|
|
Bottom,
|
|
Center,
|
|
};
|
|
|
|
struct Layout
|
|
{
|
|
struct {
|
|
LayoutSizes rule = LayoutSizes::None;
|
|
vec2f minSize = {0.f, 0.f};
|
|
vec2f maxSize = {0.f, 0.f};
|
|
} size;
|
|
|
|
struct {
|
|
LayoutAlignment rule = LayoutAlignment::None;
|
|
vec4f padding = {0.f, 0.f, 0.f, 0.f};
|
|
vec4f margin = {0.f, 0.f, 0.f, 0.f};
|
|
} alignment;
|
|
|
|
struct {
|
|
LayoutDirection rule = LayoutDirection::None;
|
|
vec2f spacing = {0.f, 0.f};
|
|
} direction;
|
|
|
|
struct {
|
|
LayoutPosition rule = LayoutPosition::None;
|
|
vec2f position = {0.f, 0.f};
|
|
} position;
|
|
};
|
|
|
|
class View
|
|
{
|
|
protected:
|
|
utils::List<RenderCall> m_RenderCalls;
|
|
Layout m_Layout;
|
|
|
|
public:
|
|
virtual ~View() = default;
|
|
|
|
[[nodiscard]] const utils::List<RenderCall>& renderCalls() const { return m_RenderCalls; }
|
|
std::unique_ptr<View> content;
|
|
|
|
virtual bool update() { if (content) return content->update(); return false; }
|
|
|
|
void draw()
|
|
{
|
|
if (!m_RenderCalls.empty()) { m_RenderCalls.clear(); }
|
|
content = std::unique_ptr<View>(body());
|
|
if (!content) { return; }
|
|
content->draw();
|
|
auto& contentRenderCalls = content->renderCalls();
|
|
m_RenderCalls.expand(contentRenderCalls);
|
|
}
|
|
|
|
virtual View* body() = 0;
|
|
};
|
|
|
|
struct Rectangle : View
|
|
{
|
|
sf::Color m_Color;
|
|
sf::Color m_BorderColor;
|
|
float m_BorderThickness = 0;
|
|
|
|
Rectangle* setBorderColor(const sf::Color& color) { m_BorderColor = color; return this; }
|
|
Rectangle* setBorderThickness(float thickness) { m_BorderThickness = thickness; return this; }
|
|
Rectangle* setColor(const sf::Color& color) { m_Color = color; return this; }
|
|
Rectangle* setSize(const vec2f& size) { m_Layout.size.minSize = size; return this; }
|
|
|
|
View* body() override {
|
|
auto m_Shape = new sf::RectangleShape(sf::Vector2f{m_Layout.size.minSize.x, m_Layout.size.minSize.y});
|
|
m_Shape->setFillColor(m_Color);
|
|
if (m_BorderThickness > 0)
|
|
{
|
|
m_Shape->setOutlineThickness(m_BorderThickness);
|
|
m_Shape->setOutlineColor(m_BorderColor);
|
|
}
|
|
m_RenderCalls.emplace_back(sf::RenderStates(), m_Shape);
|
|
return nullptr;
|
|
}
|
|
|
|
explicit Rectangle(const vec2f& size) {
|
|
m_Layout.size.minSize = size;
|
|
}
|
|
};
|
|
|
|
class Renderer
|
|
{
|
|
public:
|
|
explicit Renderer(View* _view) : view(_view) { view->draw(); }
|
|
|
|
std::unique_ptr<View> view;
|
|
|
|
void update() const
|
|
{
|
|
if (view->update())
|
|
view->draw();
|
|
}
|
|
|
|
void render(sf::RenderTarget& target, const sf::RenderStates& states) const
|
|
{
|
|
view->renderCalls().iterate([&target, &states](const RenderCall& renderCall) { renderCall.draw(target, states); });
|
|
}
|
|
};
|
|
}
|