Expression parsing and evaluation
This commit is contained in:
parent
165b00b54d
commit
eee6053cf6
1 changed files with 48 additions and 9 deletions
57
src/Lib.hs
57
src/Lib.hs
|
@ -12,11 +12,9 @@ import Text.Parsec.Expr
|
||||||
import Text.Parsec.Token
|
import Text.Parsec.Token
|
||||||
import Text.Parsec.Language
|
import Text.Parsec.Language
|
||||||
|
|
||||||
data Expr = Var String | Constant Integer | Unary UnaryOperator Expr | Binary BinaryOperator Expr Expr
|
data Expr = Variable String | Constant Rational | Binary BinaryOperator Expr Expr
|
||||||
deriving Show
|
deriving Show
|
||||||
data UnaryOperator = Not
|
data BinaryOperator = Plus | Minus | Multiply | Divide | Power
|
||||||
deriving Show
|
|
||||||
data BinaryOperator = Plus | Minus | Multiply | Divide
|
|
||||||
deriving Show
|
deriving Show
|
||||||
|
|
||||||
naturalRatio a = a % 1
|
naturalRatio a = a % 1
|
||||||
|
@ -25,9 +23,9 @@ def = emptyDef{ commentStart = ""
|
||||||
, commentEnd = ""
|
, commentEnd = ""
|
||||||
, identStart = letter <|> char '_'
|
, identStart = letter <|> char '_'
|
||||||
, identLetter = alphaNum <|> char '_'
|
, identLetter = alphaNum <|> char '_'
|
||||||
, opStart = oneOf "+-/*"
|
, opStart = oneOf "+-/*^"
|
||||||
, opLetter = oneOf "+-/*"
|
, opLetter = oneOf "+-/*^"
|
||||||
, reservedOpNames = ["+", "-", "/", "*"]
|
, reservedOpNames = ["+", "-", "/", "*", "^"]
|
||||||
, reservedNames = ["pi", "e"]
|
, reservedNames = ["pi", "e"]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -37,12 +35,16 @@ TokenParser{ parens = m_parens
|
||||||
, reserved = m_reserved
|
, reserved = m_reserved
|
||||||
, semiSep1 = m_semiSep1
|
, semiSep1 = m_semiSep1
|
||||||
, natural = m_natural
|
, natural = m_natural
|
||||||
|
, integer = m_integer
|
||||||
, whiteSpace = m_whiteSpace } = makeTokenParser def
|
, whiteSpace = m_whiteSpace } = makeTokenParser def
|
||||||
|
|
||||||
exprparser :: Parser Expr
|
exprparser :: Parser Expr
|
||||||
exprparser = buildExpressionParser table term <?> "expression"
|
exprparser = buildExpressionParser table term <?> "expression"
|
||||||
|
|
||||||
table = [
|
table = [
|
||||||
|
[
|
||||||
|
Infix (m_reservedOp "^" >> return (Binary Power)) AssocLeft
|
||||||
|
],
|
||||||
[
|
[
|
||||||
Infix (m_reservedOp "*" >> return (Binary Multiply)) AssocLeft,
|
Infix (m_reservedOp "*" >> return (Binary Multiply)) AssocLeft,
|
||||||
Infix (m_reservedOp "/" >> return (Binary Divide)) AssocLeft
|
Infix (m_reservedOp "/" >> return (Binary Divide)) AssocLeft
|
||||||
|
@ -53,6 +55,43 @@ table = [
|
||||||
]
|
]
|
||||||
]
|
]
|
||||||
|
|
||||||
|
constantInteger :: Parser Rational
|
||||||
|
constantInteger = try (do
|
||||||
|
n <- m_integer
|
||||||
|
notFollowedBy . char $ '.'
|
||||||
|
return (n % 1)
|
||||||
|
)
|
||||||
|
|
||||||
|
constantRational :: Parser Rational
|
||||||
|
constantRational = do
|
||||||
|
natural <- m_natural
|
||||||
|
_ <- char '.'
|
||||||
|
decimal <- m_natural
|
||||||
|
let natural_length = length . show $ natural
|
||||||
|
let decimal_length = length . show $ decimal
|
||||||
|
let numerator = natural * (10 ^ decimal_length) + decimal
|
||||||
|
let denominator = 10 ^ (decimal_length + natural_length - 2)
|
||||||
|
return (numerator % denominator)
|
||||||
|
|
||||||
|
{-
|
||||||
|
- a/b ^ c/d
|
||||||
|
- (a ^ c/d) / b ^ (c/d)
|
||||||
|
- root(a ^ c, d) / root(b ^ c, d)
|
||||||
|
-}
|
||||||
|
rationalPower :: Rational -> Rational -> Rational
|
||||||
|
rationalPower a b = rationalPower' (numerator a, denominator a) (numerator b, denominator b)
|
||||||
|
where
|
||||||
|
rationalPower' (a, b) (c, 1) = a ^ c % b ^ c
|
||||||
|
|
||||||
term = m_parens exprparser
|
term = m_parens exprparser
|
||||||
<|> fmap Var m_identifier
|
<|> fmap Variable m_identifier
|
||||||
<|> fmap Constant m_natural
|
<|> fmap Constant constantInteger
|
||||||
|
<|> fmap Constant constantRational
|
||||||
|
|
||||||
|
evaluate :: Expr -> Rational
|
||||||
|
evaluate (Constant c) = c
|
||||||
|
evaluate (Binary Plus a b) = evaluate a + evaluate b
|
||||||
|
evaluate (Binary Minus a b) = evaluate a - evaluate b
|
||||||
|
evaluate (Binary Divide a b) = evaluate a / evaluate b
|
||||||
|
evaluate (Binary Multiply a b) = evaluate a * evaluate b
|
||||||
|
evaluate (Binary Power a b) = rationalPower (evaluate a) (evaluate b)
|
||||||
|
|
Loading…
Reference in a new issue