Implementation and Documentation
This commit is contained in:
commit
480b499ddd
10 changed files with 386 additions and 0 deletions
182
src/Data/Infinitree.hs
Normal file
182
src/Data/Infinitree.hs
Normal file
|
@ -0,0 +1,182 @@
|
|||
{-# LANGUAGE DeriveFunctor #-}
|
||||
{-# LANGUAGE InstanceSigs #-}
|
||||
{-# LANGUAGE TypeFamilies #-}
|
||||
{-# LANGUAGE TypeApplications #-}
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
{-# LANGUAGE DeriveFoldable #-}
|
||||
{-# LANGUAGE RankNTypes #-}
|
||||
|
||||
-- |
|
||||
-- Copyright: (c) Luca S. Jaekel
|
||||
-- License: AGPL3
|
||||
--
|
||||
-- Infinitrees are memoization trees, which can be used to avoid dealing with mutable caches.
|
||||
|
||||
module Data.Infinitree
|
||||
-- export the structure and the instances but not any accessors because you're not meant to invalidate the Infinitree
|
||||
( Infinitree()
|
||||
-- * Identity trees
|
||||
, nats
|
||||
, ints
|
||||
, nums
|
||||
-- * Construction Functions
|
||||
, build
|
||||
, buildInt
|
||||
, buildNum
|
||||
)
|
||||
where
|
||||
|
||||
-- Distributive is a typeclass which allows you to use the law of distribution on functors
|
||||
-- It is a superclass constraint for Representable, which is why I have to define it
|
||||
import Data.Distributive (Distributive (distribute))
|
||||
|
||||
-- Representable functors allow indexing and construction from indices
|
||||
-- they have a index type (Rep :: Type -> Type)
|
||||
-- index takes an index and a structure, returns the element
|
||||
-- tabulate calls your function with every index to build the functor
|
||||
import Data.Functor.Rep (Representable, Rep, tabulate, index)
|
||||
|
||||
-- Natural numbers are [0..]
|
||||
import Numeric.Natural (Natural)
|
||||
|
||||
-- ternary operator of sorts
|
||||
import Data.Bool (bool)
|
||||
|
||||
-- | This tree is infinite, it doesn't end anywhere.
|
||||
--
|
||||
-- You can index into it infitely.
|
||||
--
|
||||
-- It always has a left and a right branch. Every Branch also holds a value.
|
||||
|
||||
data Infinitree a = Branch
|
||||
{ left :: Infinitree a -- left branch, smaller number, the first left branch contains all odd numbers
|
||||
, leaf :: a -- current number, 0 for all intents and purposes
|
||||
, right :: Infinitree a -- right branch, bigger number, the first right branch contains all even numbers
|
||||
}
|
||||
|
||||
instance Functor Infinitree where
|
||||
fmap :: (a -> b) -> Infinitree a -> Infinitree b
|
||||
fmap f tree = Branch (fmap f (left tree)) (f $ leaf tree) (fmap f (right tree))
|
||||
|
||||
instance Applicative Infinitree where
|
||||
pure :: a -> Infinitree a
|
||||
pure e = Branch (pure e) e (pure e)
|
||||
(<*>) :: Infinitree (a -> b) -> Infinitree a -> Infinitree b
|
||||
(<*>) (Branch fl f fr) (Branch vl v vr) = Branch (fl <*> vl) (f v) (fr <*> vr)
|
||||
liftA2 :: (a -> b -> c) -> Infinitree a -> Infinitree b -> Infinitree c
|
||||
liftA2 f (Branch la va ra) (Branch lb vb rb) = Branch (liftA2 f la lb) (f va vb) (liftA2 f ra rb)
|
||||
(*>) :: Infinitree a -> Infinitree b -> Infinitree b
|
||||
(*>) = flip const
|
||||
(<*) :: Infinitree a -> Infinitree b -> Infinitree a
|
||||
(<*) = const
|
||||
|
||||
-- >>> [1, 2] <* [1, 2]
|
||||
-- [1,1,2,2]
|
||||
|
||||
-- I could not define a useful Foldable instance
|
||||
--
|
||||
-- instance Foldable Infinitree where
|
||||
-- foldMap :: Monoid m => (a -> m) -> Infinitree a -> m
|
||||
-- foldMap f (Branch l v r) = f v
|
||||
|
||||
-- | This is a superclass constraint for representable, but it is entirely implementable from Representable
|
||||
--
|
||||
-- I now learned that I could have derived it via the Co newtype from Data.Functor.Rep
|
||||
--
|
||||
-- https://hackage-content.haskell.org/package/adjunctions-4.4.3/docs/Data-Functor-Rep.html#t:Co
|
||||
|
||||
instance Distributive Infinitree where
|
||||
distribute :: Functor f => f (Infinitree a) -> Infinitree (f a)
|
||||
distribute f = tabulate (\ i -> fmap (flip index i) f)
|
||||
|
||||
-- Representable allows indexing and construction
|
||||
instance Representable Infinitree where
|
||||
-- only natural numbers index into this structure
|
||||
type Rep Infinitree = Natural
|
||||
|
||||
tabulate :: (Rep Infinitree -> a) -> Infinitree a
|
||||
tabulate f' = let
|
||||
|
||||
-- build a tree structure of numbers, like this
|
||||
-- _0
|
||||
-- _/ \_
|
||||
-- _/ \_
|
||||
-- _/ \_
|
||||
-- / \
|
||||
-- _1 2_
|
||||
-- / \ / \
|
||||
-- / \ / \
|
||||
-- / \ / \
|
||||
-- 3 5 4 6
|
||||
-- / \ / \ / \ / \
|
||||
-- 7 11 9 13 8 12 10 14
|
||||
tabulate' :: (Rep Infinitree -> a) -> Rep Infinitree -> Natural -> Infinitree a
|
||||
tabulate' f !i !s = let -- keep the indices strict to avoid function application chains
|
||||
l = i + s
|
||||
r = l + s
|
||||
s' = 2 * s
|
||||
in Branch (tabulate' f l s') (f i) (tabulate' f r s')
|
||||
|
||||
in tabulate' f' 0 1
|
||||
|
||||
-- index into the tree structure recursively
|
||||
-- the current leaf always has value 0, the index will be adjusted along the way
|
||||
index :: Infinitree a -> Rep Infinitree -> a
|
||||
index t n = let
|
||||
|
||||
-- inner recursive function
|
||||
index' !tree !0 = leaf tree
|
||||
index' !tree !i = index' subtree q
|
||||
where
|
||||
(!q, !r) = pred i `quotRem` 2 -- q is strict to avoid useless function application delays
|
||||
!subtree = bool right left (r == 0) $ tree
|
||||
|
||||
in index' t n
|
||||
|
||||
-- * Identity trees
|
||||
--
|
||||
-- These are probably not optimal for performance, since you always have two trees in memory if you `fmap` over them
|
||||
|
||||
|
||||
-- | a tree of natural numbers.
|
||||
--
|
||||
-- a use case would be to `fmap` over it to transform it.
|
||||
--
|
||||
-- >>> map (index nats) [0..15]
|
||||
-- [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
|
||||
|
||||
|
||||
nats :: Infinitree Natural
|
||||
nats = tabulate @Infinitree id
|
||||
|
||||
-- | tree of integer numbers
|
||||
--
|
||||
-- in case you don't want to transform to integer for mapping
|
||||
|
||||
ints :: Infinitree Integer
|
||||
ints = tabulate @Infinitree toInteger
|
||||
|
||||
-- | a tree of generic numbers
|
||||
--
|
||||
-- if you need a specific number type, make sure you don't use a bounded type, the tree is infinite
|
||||
|
||||
nums :: Num n => Infinitree n
|
||||
nums = tabulate @Infinitree fromIntegral
|
||||
|
||||
|
||||
-- * Construction functions
|
||||
|
||||
-- | build using the infinitree indices
|
||||
|
||||
build :: (Natural -> a) -> Infinitree a
|
||||
build = tabulate @Infinitree
|
||||
|
||||
-- | build using arbitrary-width integers
|
||||
|
||||
buildInt :: (Integer -> a) -> Infinitree a
|
||||
buildInt = tabulate @Infinitree . (. toInteger)
|
||||
|
||||
-- | build using whatever num type you need
|
||||
|
||||
buildNum :: Num n => (n -> a) -> Infinitree a
|
||||
buildNum = tabulate @Infinitree . (. fromIntegral)
|
36
src/Data/Infinitree/Examples.hs
Normal file
36
src/Data/Infinitree/Examples.hs
Normal file
|
@ -0,0 +1,36 @@
|
|||
{-# LANGUAGE TypeApplications #-}
|
||||
-- |
|
||||
-- Copyright: (c) Luca S. Jaekel
|
||||
-- License: AGPL3
|
||||
--
|
||||
-- This is the example usage module, you're meant to look at the source code, feel free to click the `Source` link below
|
||||
module Data.Infinitree.Examples
|
||||
(fib)
|
||||
where
|
||||
|
||||
import Data.Infinitree ( Infinitree )
|
||||
|
||||
import qualified Data.Functor.Rep as Representable
|
||||
import Numeric.Natural (Natural)
|
||||
|
||||
-- | This defines a convenience function
|
||||
-- users wouldn't have to call Representable.index fibonacci themselves
|
||||
-- This example is written to have you look at the source code for example usage.
|
||||
|
||||
fib :: Natural -> Integer
|
||||
fib = Representable.index fibonacci
|
||||
|
||||
-- | a tree of all fibonacci numbers
|
||||
--
|
||||
-- while this enables memoization it also adds a O(log n) overhead to every lookup
|
||||
|
||||
fibonacci :: Infinitree Integer
|
||||
fibonacci = Representable.tabulate @Infinitree go
|
||||
-- `Representable.tabulate @Infinitree go` is equivalent to `fmap go nats` but more efficient because it doesn't maintain two trees
|
||||
where
|
||||
-- go is the fibonacci function, it will be called with every index
|
||||
go 0 = 0
|
||||
go 1 = 1
|
||||
-- sum the lower to fibonacci numbers from the tree
|
||||
go n = Representable.index fibonacci (n - 1) + Representable.index fibonacci (n - 2)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue