partikle/main.c

274 lines
8.7 KiB
C

/*
Copyright (C) 1997-2025 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely.
*/
#include <SDL3/SDL_rect.h>
#include <SDL3/SDL_render.h>
#include <SDL3/SDL_surface.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define SDL_MAIN_USE_CALLBACKS 1 /* use the callbacks instead of main() */
#include <SDL3/SDL.h>
#include <SDL3/SDL_main.h>
#include <SDL3_ttf/SDL_ttf.h>
#include "submodules/SDL_FPSCounter/src/SDL_FPSCounter.h"
#include "submodules/utilitiec/src/QuadTree/QuadTree.h"
#include "submodules/utilitiec/src/rand/xoshiro256.h"
static SDL_Window *window = NULL;
static SDL_Renderer *renderer = NULL;
static QuadTree tree;
static SDL_FPSCounter fps_counter;
static scalar view_angle = 0.25 * M_PI;
typedef struct Particle_s {
QuadTreeLeaf position;
double velocity;
double direction;
} Particle;
static Particle particles[500];
scalar QuadTreeLeaf_norm(QuadTreeLeaf* vector)
{
return sqrt(pow(vector->x, 2) + pow(vector->y, 2));
}
scalar Particle_AngleTo(Particle* this, QuadTreeLeaf* other)
{
QuadTreeLeaf distance_vector = {other->x - this->position.x, other->y - this->position.y};
QuadTreeLeaf direction_vector = {cos(this->direction), sin(this->direction)};
scalar distance_norm = QuadTreeLeaf_norm(&distance_vector);
if (distance_norm == 0) return 0;
scalar angle = acos((distance_vector.x * direction_vector.x + distance_vector.y * direction_vector.y) / distance_norm);
if (isnan(angle)) return M_PI - 0.01;
return angle;
}
/* This function runs once at startup. */
SDL_AppResult SDL_AppInit(void **appstate, int argc, char *argv[])
{
SDL_Color color = { 255, 255, 255, SDL_ALPHA_OPAQUE };
SDL_Surface *text;
/* Create the window */
if (!SDL_CreateWindowAndRenderer("Swarm Simulation", 600, 600, 0, &window, &renderer)) {
SDL_Log("Couldn't create window and renderer: %s\n", SDL_GetError());
return SDL_APP_FAILURE;
}
if (!TTF_Init()) {
SDL_Log("Couldn't initialise SDL_ttf: %s\n", SDL_GetError());
return SDL_APP_FAILURE;
}
QuadTree_Create(&tree, 600, 600, NULL);
Xoshiro256State rand_state = { 0, 10, 10, 10 };
for (size_t i = 0; i < sizeof(particles) / sizeof(particles[0]); i++) {
particles[i].position.x = xoshiro256_next(&rand_state) % 600;
particles[i].position.y = xoshiro256_next(&rand_state) % 600;
particles[i].velocity = 5;
particles[i].direction = 1;
QuadTree_Insert(&tree, &particles[i].position);
}
SDL_CreateFPSCounter(&fps_counter, 60);
return SDL_APP_CONTINUE;
}
/* This function runs when a new event (mouse input, keypresses, etc) occurs. */
SDL_AppResult SDL_AppEvent(void *appstate, SDL_Event *event)
{
if (event->type == SDL_EVENT_KEY_DOWN ||
event->type == SDL_EVENT_QUIT) {
return SDL_APP_SUCCESS; /* end the program, reporting success to the OS. */
}
return SDL_APP_CONTINUE;
}
int QuadTree_DrawTree(void* context, QuadSubTree* tree, QuadTreeDimension dimension)
{
SDL_FRect render_rect;
render_rect.x = dimension.left;
render_rect.y = dimension.top;
render_rect.h = dimension.bottom - dimension.top;
render_rect.w = dimension.right - dimension.left;
SDL_RenderRect(renderer, &render_rect);
return EXIT_SUCCESS;
}
void Particle_Move(Particle* self)
{
double frame_rate = SDL_FPSCounterFPS(&fps_counter);
if (frame_rate == 0) {
frame_rate = 60;
}
Particle copy = *self;
self->position.x += 1.0/frame_rate * 50 * self->velocity * cos(self->direction);
self->position.y += 1.0/frame_rate * 50 * self->velocity * sin(self->direction);
if (self->position.x < 0) {
self->position.x *= -1;
self->direction -= 2 * (self->direction - M_PI_2);
}
if (self->position.y < 0) {
self->position.y *= -1;
self->direction -= 2 * (self->direction - M_PI);
}
if (self->position.x > 600) {
self->position.x -= self->position.x - 600;
self->direction -= 2 * (self->direction - M_PI_2);
}
if (self->position.y > 600) {
self->position.y -= self->position.y - 600;
self->direction -= 2 * (self->direction - M_PI);
}
/*
self->position.x = self->position.x > 600 ? self->position.x - 600 : self->position.x;
self->position.x = self->position.x < 0 ? self->position.x + 600 : self->position.x;
self->position.y = self->position.y > 600 ? self->position.y - 600 : self->position.y;
self->position.y = self->position.y < 0 ? self->position.y + 600 : self->position.y;
*/
if(isnan(self->position.x) || isnan(self->position.y)) {
printf("Before %f, %f, direction %f, velocity %f\n", copy.position.x, copy.position.y, copy.direction, copy.velocity);
}
}
struct InteractionContext {
int count;
double angleSum;
QuadTreeLeaf positionSum;
Particle* self;
};
void Particle_ApplyInteraction(Particle* self, struct InteractionContext* interaction_context)
{
self->direction += interaction_context->angleSum;
self->direction /= (interaction_context->count + 1);
QuadTreeLeaf vectorToPositionSum = {
.x = interaction_context->positionSum.x / (interaction_context->count + 1),
.y = interaction_context->positionSum.y / (interaction_context->count + 1),
};
scalar angleToPositionSum = Particle_AngleTo(self, &vectorToPositionSum);
if(isnan(angleToPositionSum)) {
printf("self: %f, %f, direction: %f\n", self->position.x, self->position.y, self->direction);
printf("vectorToPosSum: %f, %f\n", vectorToPositionSum.x, vectorToPositionSum.y);
}
self->direction += angleToPositionSum / 2;
}
int InteractionContext_NearbyLeafCallback(void* _context, QuadTreeLeaf* leaf)
{
struct InteractionContext* interaction_context = (struct InteractionContext*) _context;
Particle* particle = (Particle*) leaf;
if (particle == interaction_context->self) return EXIT_SUCCESS;
scalar angle = Particle_AngleTo(interaction_context->self, &particle->position);
if (fabs(angle) <= view_angle) {
interaction_context->angleSum += angle;
interaction_context->count++;
}
interaction_context->positionSum.x += leaf->x;
interaction_context->positionSum.y += leaf->y;
return EXIT_SUCCESS;
}
int QuadTreeCallBack_ColorLeaf(void* context, QuadTreeLeaf* leaf)
{
SDL_FRect render_rect;
render_rect.x = leaf->x - 5;
render_rect.y = leaf->y - 5;
render_rect.h = 10;
render_rect.w = 10;
SDL_RenderRect(renderer, &render_rect);
return EXIT_SUCCESS;
}
/* This function runs once per frame, and is the heart of the program. */
SDL_AppResult SDL_AppIterate(void *appstate)
{
SDL_FPSCounterTick(&fps_counter);
//printf("%lu\n", SDL_FPSCounterFPS(&fps_counter));
// clear screen
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);
SDL_SetRenderDrawColor(renderer, 255, 255, 255, 255);
QuadTree new_tree;
QuadTree_Create(&new_tree, 600, 600, tree.allocator);
QuadTreeLeaf sumPosition = {0, 0};
struct InteractionContext interactionContext = {0, 0, sumPosition, NULL};
for (size_t i = 0; i < sizeof(particles) / sizeof(particles[0]); i++) {
sumPosition = particles[i].position;
interactionContext = (struct InteractionContext) {0, 0, sumPosition, &particles[i]};
QuadTree_ForEachLeafInRadius(&tree, InteractionContext_NearbyLeafCallback, &interactionContext, particles[i].position, 50);
Particle_ApplyInteraction(&particles[i], &interactionContext);
Particle_Move(particles + i);
QuadTree_Insert(&new_tree, &particles[i].position);
SDL_RenderPoint(renderer, particles[i].position.x, particles[i].position.y);
}
QuadTree_ForEachLeafInRadius(&tree, QuadTreeCallBack_ColorLeaf, &interactionContext, particles[0].position, 50);
SDL_SetRenderDrawColor(renderer, 0, 0, 255, 255);
SDL_FRect render_rect;
render_rect.x = particles[0].position.x - 5;
render_rect.y = particles[0].position.y - 5;
render_rect.h = 10;
render_rect.w = 10;
SDL_RenderRect(renderer, &render_rect);
QuadTree_Destroy(&tree);
tree = new_tree;
QuadTree_ForEachTree(&tree, QuadTree_DrawTree, NULL);
// swap
SDL_RenderPresent(renderer);
return SDL_APP_CONTINUE;
}
/* This function runs once at shutdown. */
void SDL_AppQuit(void *appstate, SDL_AppResult result)
{
QuadTree_Destroy(&tree);
TTF_Quit();
SDL_DestroyWindow(window);
SDL_DestroyRenderer(renderer);
}